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In an earlier note, S. P. Singh gave an extension of a theorem of Brosowski in a
normed linear space setting. Variants of this theorem are considered in the context
of strictly convex, reflexive, and inner product spaces.

Let X be a normed linear space. T: X -+ X is contractive if II Tx - Tyll ~
Ilx - yll for all x,y E X. The set of best C-approximants to x, Pc(x), consists
of all y in C such that Ily-xll=inf{llz-xll:zEC}. A subset C is
starshaped if there is a point p in C such that x E C and 0 ~ A~ I imply
AP + (I - A) x E C. Every convex set is starshaped, but not conversely. X is
strictly convex if x,yEX, x*y, and Ilxll =IIYII, imply II!(x+ y)11 < Ilxll.

Let T be a contractive operator on a normed linear space X. Let C be a
subset of X, and x be a T-invariant point. Brosowski [I] proved the
following:

THEOREM. There is a y in Pc(x), which is also T-invariant, provided

(A) T:C-+C;

(B) Pc(x) is nonempty and compact,' and

(C) Pc(x) is convex.

Singh [5] proved that the conclusion holds even when PC<x) is only
starshaped. So we weaken (C) to PC<x) is starshaped. Singh remarks that T
must be linear in Brosowski's theorem, but an examination of the proof
shows that linearity is not used.

LEMMA. If T: ac -+ C, then T: Pc(x) -+ Pc(x).

Proof Let yEPc(x). Every neighborhood of y contains a point strictly
between x and y on the line segment {Ax + (I - A) y: 0 <A< l}. Such a
point is closer to x than y is, so it cannot be in C (y is a best C-approximant
to x). Thus y is not in the interior of C, and since T: ac -+ C, Ty must be in
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c. II Ty - xii = II Ty - Txll ~ II y - xii. Thus Ty must also be a best C
approximant to x.

Remarks. In Singh's proof, the only use made of (A) T: C ---+ C, is to
prove that T: PC<x) ---+ Pc(x). So we weaken (A) to T: BC ---+ C. The theorem is
still true and Singh's proof is still valid. Since there are several fixed-point
theorems for operators satisfying T: BC ---+ C, the lemma may have
independent interest. It is sufficient that T: B ---+ Band B contains all line
segments joining x and points in C. In this case, and in other theorems as
well, BC can be taken to mean the boundary of C relative to B, in T: BC ---+ C.

Condition (B) Pc(x) is nonempty and compact, may be difficult to verify
in specific instances. This leads to the consideration of special cases when it
is possible to replace compactness by weak compactness or prove Pc(x) is
nonempty. The following is a variant of a theorem due to Browder 12,
Theorem 4]. By applying it with D = Pc(x), it would be possible; for Hilbert
spaces, to replace (B) by PC<x) is nonempty and weakly compact.

THEOREM 1. Let D be a nonempty, weakly compact, and starshaped
subset of a Hilbert space X. Suppose T is a contractive mapping ofD into D.
Then T has at least one fixed point.

Proof In this setting weakly compact is equivalent to weakly sequen
tially compact which is equivalent to weakly closed and norm bounded.
Using these facts, note that Browder's proof holds if the fixed element Vo of
D, in his proof, is chosen to be the p in the definition of starshaped.

EXAMPLE. For convex sets, weakly closed and closed are equivalent.
This is not true for even bounded starshaped sets. We given an example of a
set in 12 which is closed, bounded, and starshaped, but not weakly closed. Let
{en};:::'=o be a countable orthonormal basis for 12 and let

S = {A(eo+ en): 0 ~ A~ 1, n > O}.

If xES, Ilxll ~ Vi and AO + (1 - A) x = (1 - A) xES for all 0 ~ A~ 1.
Thus S is bounded and starshaped.

S is not weakly closed. (eo +ek,eJ---+ (eo, eJ for allj. Since {ej } spans
12~lt, (eO-ek,f)---+(eo,f) for all fE12. Thus eoflS but eO+ek---+eO
weakly.

S is closed. Suppose {xn} C Sand X n---+ x. We show that xES. For all k,
(x n , ek ) ---+ (x, ek ).

Case A. There exists k> °such that (x, ek) =1= 0. Then there is an N
such that for all n) N, (xn, ek) =1= O. X n= An(eo+ ek) and (xn, ek) =1= 0 implies
xn= An(eo+ ek) for all n) N. Thus eventually {xn} is in the line segment
\0, eo + ed, which is closed, so xES.
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Case B. For all k>O, (x,ek) =0. Then x='E..J!=oajej=aoeo' Let
xn = An(eo + ekJ Then (xn, eo) --+ (x, eo) or AnI(eo, eo) + (ekn , eo)]--+ ao(eo' eo)·
Thus An--+ao. Ilxnll--+llxll or Anlleo+ed--+laoilleoll or y'2An--+laol. But
Vi An --+Vi ao· Thus ao= 0 and x = 0 E S.

Naturally, if C is not closed, Pc(x) may be empty. If C is closed, so is
PC<x), and Pc(x) is always bounded. Furthermore, Pc(x) is nonempty and
compact, whenever C is boundedly compact, that is, the intersection of C
with every closed bounded set is compact. This includes the cases of X being
finite-dimensional and of C being compact. Of course, in infinite-dimensional
spaces, it may be difficult to prove that C is compact (or even boundedly
compact). This appears to limit the applications of the theorem. The only
example Brosowski II] gives is finite-dimensional. The facts above are all
elementary.

The most direct way to prove that Pc<x) is starshaped, is to know that C
is convex. In this case, Pc(x) is even convex and Brosowski's original
theorem is sufficient. We now consider the consequences of assuming that C
is convex. If C is closed and convex, Pc(x) is also, and thus is weakly closed.
It is wellknown 14, p. 258], that if X is reflexive, then weakly closed, norm
bounded sets are weakly compact.

Even if C is not boundedly compact, Pc(x) is nonempty provided that C is
closed and convex, and X is reflexive [4, p. 277]. Clearly, if C is not closed,
Pc(x) may be empty. An example similar to the one above
(S = lA(eo + «n + l)/n) en): 0 ~ A~ I, n > O}) shows that in 12 there is a
closed, bounded, and starshaped set which contains no best approximants to
a point (eo)' Thus convex cannot be replaced by starshaped here. Likewise, if
X is not reflexive, there are even hyperplanes that contain no best approx
imants. We need the following result, which is elementary for R 2 and R 3.

LEMMA. If x* is a nonzero continuous linear functional on X and
S = {x E X: x*(x) = Ilx* II} then inf{llxll: xES} = 1.

Proof Let xES. x*(x)=llx*ll. But Ix*(x)I~llx*llllxll. So 1~llxll.

Hence inf{llxll: xES} ~ 1. Now Ilx* II = sup{lx*(x)I/llxll: x oF Of. Let a > 1.
There is some x such that Ilx*ll~alx*(x)I/llxll,i.e., Ilx*llllxll/lx*(x)l~a.

Let y=Olx*lI/x*(x»x. Since x*(y)=llx*ll, yES. Ilyll=llx*llllxll/
Ix*(x)1 ~ a. Thus inf{llxll: xES} ~ a for all a > 1.

THEOREM 3. The following are equivalent:

(A) X is reflexive.

(B) For every closed convex set S, there is an X o E S such that IIx oll =
inf{llxll: xES}.
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(C) For every closed, bounded, and convex set S, there is an XoE S
such that Ilxoll = inf{llxll: xES}.

(D) For every hyperplane S of the form {x: x*(x) = Ilx* II} for some
x*, there is an XoE S such that Ilxoll = inf{llxll: xES}.

(E) For every continuous linear functional x*, there is an Xosuch that
x*(xo) = Ilx* II and Ilxoll = 1.

Proof Statement (A) ~ (B) is standard [4, p. 277]. Statement (B) ~ (C)
is evident. Statement (C)~ (D). Let S be as in (D). S is convex and weakly
closed, hence closed. If S' = S n {x: Ilxll:S;;; 2} then S' is closed, bounded,
and convex. Assuming (C), S' has a point of minimum norm, xo' Since
inf{llxll: xES} = I, S' has the same minimum norm as S. Thus XoE Sand
Ilxoll=l=inf{llxll:xES}. Statement (D)~(E). Given x*, let S={x:
x*(x) = Ilx* II}. By (D), there is an XoE S (i.e., x*(xo) = Ilx* II) such that
Ilxoll = inf{llxll: xES}. But this infimum is 1. Statement (E) ~ (A). The
hard part is due to James [3].

If X is strictly convex, Pc(x) satisfies a rather restrictive condition. Every
nontrivial convex combination of points from Pc(x) is in the complement of
C. We will use the following special case.

LEMMA. Let X be a strictly convex normed linear space, x E X, and C a
subset of X. IfPI and P2 are best C-approximants to x, then i(PI +P2) E c.

Proof Let P=i(PI+P2)' IIp-xll=IIi(PI-x)+i(P2-x)ll. Now
Ilpl -xii = IIp2 - xii = inf{lly - xll;y E C} = d, and II(PI -x) - (P2 - x) =
Ilpl - P211 > O. So by strict convexity, lip - xii = II i(PI - x) + i(P2 - x)11 <
max{llpl - xii, IIp2 - xii}. Thus lip -xii < inf{lly - xll:y E C} and P E c.

THEOREM 3. Let X be strictly convex and Pc(x) nonempty and
starshaped. Then PcCx) = {xo} with Txo= Xo'

Proof If q *- P are two points in PcCx), then 1P +1q E C; hence
1P +1q E Pc(X). So if Pc(x) is starshaped, it must be a singleton. Since
T:aC~C, T:PcCx)~Pc(x). Thus TXoEPcCx)= {xo}'

Remarks. This shows that the theorem is needed only in spaces that are
not srictly convex. Recall that Hilbert spaces, Lp-spaces, for P > I, and
uniformly convex spaces are all strictly convex (or rotund), and also
reflexive. Yet the condition PcCx) *- 0 does not hold in general unless C is
convex and X is reflexive, (or C is boundedly compact). This seems to limit
most applications to finite-dimensional spaces with the II or leo norms. These
spaces are not strictly convex, but are reflexive. In finite-dimensional spaces,
if C is closed and convex, conditions (B) and (C) hold. The following
theorem may have practical applications.
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THEOREM 4. Let X be a strictly convex, reflexive space. Suppose
T: e~ X, T: Be ~ e, and e is closed and convex. If T can be extended to a
contractive operator on the whole of X in such a way that there is a T
invariant point x in X, then there is a T-invariant point in C.

Proof Pc(x) =I=- 0 since X is reflexive. PcCx) = {xol = {Txol since X is
strictly convex. But X o E e.

REFERENCES

I. B. BROSOWSKI, Fixpunktsatze in der Approximations-theorie, Mathematica (Cluj) II
(1969), 195-220.

2. F. E. BROWDER AND W. V. PETRYSHYN, Construction of fixed points of nonlinear
mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228.

3. R. C. JAMES, Characterizations of reflexivity, Stud. Math. 23 (1964), 205-216.
4. R. LARSEN, "Functional Analysis: An Introduction," Dekker, New York, 1973.
5. S. P. SINGH, An application of a fixed-point theorem to approximation theory, J. Approx.

Theory 2S (1979), 89-90.

640/34/3-2


